accepted_values
accepted_values(data, items)Raises error if columns contains values not specified in items
Parameters
data: PolarsLazyOrDataFrame
:
Returns
| Name | Type | Description |
|---|---|---|
| PolarsLazyOrDataFrame | The original polars DataFrame or LazyFrame when the check passes |
Examples
>>> import polars as pl
>>> import pelage as plg
>>> items = {"a": [1, 2, 3], "b": ["a", "b", "c"]}
>>> df = pl.DataFrame(items)
>>> df.pipe(plg.accepted_values, {"a": [1, 2, 3]})
shape: (3, 2)
┌─────┬─────┐
│ a ┆ b │
│ --- ┆ --- │
│ i64 ┆ str │
╞═════╪═════╡
│ 1 ┆ a │
│ 2 ┆ b │
│ 3 ┆ c │
└─────┴─────┘>>> df.pipe(plg.accepted_values, {"a": [1, 2]})
Traceback (most recent call last):
...
pelage.types.PolarsAssertError: Details
shape: (1, 1)
┌─────┐
│ a │
│ --- │
│ i64 │
╞═════╡
│ 3 │
└─────┘
Error with the DataFrame passed to the check function:
--> It contains values that have not been white-Listed in `items`.
Showing problematic columns only.