has_no_infs
has_no_infs(data, columns=None)Check if a DataFrame has any infinite (inf) values.
Parameters
data: PolarsLazyOrDataFrame-
The input DataFrame to check for null values.
columns: Optional[PolarsColumnType] = None-
Columns to consider for null value check. By default, all columns are checked.
Returns
| Name | Type | Description |
|---|---|---|
| PolarsLazyOrDataFrame | The original polars DataFrame or LazyFrame when the check passes |
Examples
>>> import polars as pl
>>> import pelage as plg
>>> df = pl.DataFrame(
... {
... "a": [1, 2],
... "b": [1.0, float("inf")],
... }
... )
>>> plg.has_no_infs(df)
Traceback (most recent call last):
...
pelage.types.PolarsAssertError: Details
shape: (1, 2)
┌─────┬─────┐
│ a ┆ b │
│ --- ┆ --- │
│ i64 ┆ f64 │
╞═════╪═════╡
│ 2 ┆ inf │
└─────┴─────┘
Error with the DataFrame passed to the check function:
--> The were unexpeted infinites in the dataframe. See above.>>> plg.has_no_infs(df, ["a"]) # or plg.has_no_infs(df, "a")
shape: (2, 2)
┌─────┬─────┐
│ a ┆ b │
│ --- ┆ --- │
│ i64 ┆ f64 │
╞═════╪═════╡
│ 1 ┆ 1.0 │
│ 2 ┆ inf │
└─────┴─────┘