not_accepted_values
not_accepted_values(data, items)Raises error if columns contains values specified in List of forbbiden items
Parameters
data: PolarsLazyOrDataFrame
:
Returns
| Name | Type | Description |
|---|---|---|
| PolarsLazyOrDataFrame | The original polars DataFrame or LazyFrame when the check passes |
Examples
>>> import polars as pl
>>> import pelage as plg
>>> df = pl.DataFrame(
... {"a": [1, 2, 3], "b": ["a", "b", "c"]}
... )
>>> df.pipe(plg.not_accepted_values, {"a": [4, 5]})
shape: (3, 2)
┌─────┬─────┐
│ a ┆ b │
│ --- ┆ --- │
│ i64 ┆ str │
╞═════╪═════╡
│ 1 ┆ a │
│ 2 ┆ b │
│ 3 ┆ c │
└─────┴─────┘>>> df.pipe(plg.not_accepted_values, {"b": ["a", "b"]})
Traceback (most recent call last):
...
pelage.types.PolarsAssertError: Details
shape: (2, 1)
┌─────┐
│ b │
│ --- │
│ str │
╞═════╡
│ a │
│ b │
└─────┘
Error with the DataFrame passed to the check function:
--> This DataFrame contains values marked as forbidden