at_least_one
checks.at_least_one(data, columns=None, group_by=None)
Ensure that there is at least one not null value in the designated columns.
Parameters
data: PolarsLazyOrDataFrame
-
Polars DataFrame or LazyFrame containing data to check.
columns: Optional[PolarsColumnType] = None
-
Columns to consider to check the presence of at least one value. By default, all columns are checked.
group_by: Optional[PolarsOverClauseInput] = None
-
When specified perform the check per group instead of the whole column, by default None
Returns
Type | Description |
---|---|
PolarsLazyOrDataFrame | The original polars DataFrame or LazyFrame when the check passes |
Examples
>>> import polars as pl
>>> import pelage as plg
>>> df = pl.DataFrame({"a": [None, None], "b": [1, None]})
>>> df.pipe(plg.at_least_one, "b")
2, 2)
shape: (
┌──────┬──────┐
│ a ┆ b │--- ┆ --- │
│
│ null ┆ i64 │
╞══════╪══════╡1 │
│ null ┆
│ null ┆ null │ └──────┴──────┘
>>> df.pipe(plg.at_least_one)
Traceback (most recent call last):
...
pelage.checks.PolarsAssertError: Detailswith the DataFrame passed to the check function:
Error -->Some columns contains only null values: ['a']
The folloing example details how to perform this checks for groups:
>>> df = pl.DataFrame(
... {"a": [None, None, None, 2],
... "group": ["G1", "G1", "G2", "G2"],
...
... }
... )>>> df.pipe(plg.at_least_one, "a")
4, 2)
shape: (
┌──────┬───────┐
│ a ┆ group │--- ┆ --- │
│ str │
│ i64 ┆
╞══════╪═══════╡
│ null ┆ G1 │
│ null ┆ G1 │
│ null ┆ G2 │2 ┆ G2 │
│
└──────┴───────┘>>> df.pipe(plg.at_least_one, "a", group_by="group")
Traceback (most recent call last):
...
pelage.checks.PolarsAssertError: Details1, 3)
shape: (
┌───────┬─────────┬──────────────┐
│ group ┆ columns ┆ at_least_one │--- ┆ --- ┆ --- │
│ str ┆ str ┆ bool │
│
╞═══════╪═════════╪══════════════╡
│ G1 ┆ a ┆ false │
└───────┴─────────┴──────────────┘with the DataFrame passed to the check function:
Error -->Some columns contains only null values per group