has_columns
has_columns(data, names)Check if a DataFrame has the specified
Parameters
data: PolarsLazyOrDataFrame-
The DataFrame to check for column presence.
names: Union[str, List[str]]-
The names of the columns to check.
Returns
| Name | Type | Description |
|---|---|---|
| PolarsLazyOrDataFrame | The original polars DataFrame or LazyFrame when the check passes |
Examples
>>> import polars as pl
>>> import pelage as plg
>>> df = pl.DataFrame({"a": [1, 2, 3], "b": ["a", "b", "c"]})
>>> df.pipe(plg.has_columns, "b")
shape: (3, 2)
┌─────┬─────┐
│ a ┆ b │
│ --- ┆ --- │
│ i64 ┆ str │
╞═════╪═════╡
│ 1 ┆ a │
│ 2 ┆ b │
│ 3 ┆ c │
└─────┴─────┘>>> df.pipe(plg.has_columns, "c")
Traceback (most recent call last):
...
pelage.types.PolarsAssertError: Details
Error with the DataFrame passed to the check function:
--> Missing columns if the dataframe: {'c'}>>> df.pipe(plg.has_columns, ["a", "b"])
shape: (3, 2)
┌─────┬─────┐
│ a ┆ b │
│ --- ┆ --- │
│ i64 ┆ str │
╞═════╪═════╡
│ 1 ┆ a │
│ 2 ┆ b │
│ 3 ┆ c │
└─────┴─────┘